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1. Introduction

The first- and second-order variation of the optimal value of a

general nonlinear program under quite arbitrary parametric perturba-

tions has been investigated by Hogan [15], Arnmacost and Fiacco [1,2,3],

Fiacco [9], and Fiacco and McCormick [11]. In [2] the optimal value

function is shown, under strong conditions, to be twice continuously

differentiable, with respect to the problem parameters, with its

parameter gradient (Hessian) equal to the gradient (Hessian) of the

Lagrangian of the problem. Armacost and Fiacco [1] have also obtained

first- and second-order expressions for changes in the optimal value

function as a function of right-hand side periurbations.

A r.umber of results relating to the differential stability of

the optimal value function have also been obtained, generally associ-

ated with the existence of directional derivatives or bounds on the

directional derivative limit quotient. Danskin [6,7] provided one of

the earliest characterizations of the differential stability of the

optimal value function of a mathematical program. Addressing the
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problem minimize f(xc) subject to xeS, S some topologica. space,

E in E , Danskin derived conditions tinder which the directional de-

rivative of f* exists and also determined its representation. This

result has wide applicability in the sense that the constiaint space,

S, can be any compa:t topological space. Howevei, the result is re-

stricted to a constraint set that does not vary with the rarameter

c. For the s'ecial case in which S is defined 1y inequalities in-

volving a parameter, gi(x,c) > 0 for i = l,...,m, where f is convex

and the gi are concave on S, Hogan [151 has given conditions that imply

that the directional derivative of f* existE and is finite in all

directions.

For programs without equality constrairts, Rockafellar [191 has

shown that, under certain second-order conditions, the optimal value

function satisfies a stability of degree two. Under this stability

property, bounds on the directional derivative of f* can be derived.

For convex programming problems, Gol'stein [14] has shown that a saddle

point condition is satisfied by the directional derivative of f*.

Gauvin and Tolle [13], not assuming convexity, but limiting their

analysis to right-hand side perturbations, extended the work of

Gol'stein and provide sharp upper and lower bounds on the directional

derivativ2 limit quotient of f*, assuming the Mangasarian-Fromovitz

constraint qualification and without requiring the existence of

second-order conditions. Optimal value sensitivity results for infinite *

dimensional programs have recently been obtaiaed by Maurer [17,18].

The purpose of this paper is to refine and continue the preliminary

but incomplete study conducted by Fiacco and Rutzler [10] that extends

the result-3 of Gauvin and Tolle 113) to the general inequality constrained

mathematical program in which a parameter appears arbitrarity in the

constraints and the objective function. We compl.ete this extension andL2-
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obtain, for the general inequality-equality piobleL., the Gauvin-Tolle

upper and lower bounds on the directional derivative limit quotient of

the optimal value function. In a paper essentially 'simultaneous to [10],

Gauvin and Dubeau [12] have independently obtained the differential

boundn under the same assumptions invoked here but using a different

method of proof.

Sections 1 through 3, through Theorem 3.7, and Sections 5 and 6 are

taken more or less intact from [10] and are reported here for completeness.

Theorem Q.l and Corollary 4.2 were also obtained in [10]. The remaining

results, Lemmas 3.8, 3.10, 4.3, 4.4 and Theorems 3.9, 3.11, 4.6, 4.8, and

4.9, extend the reduction approach introduced Jn [10] and complete the

development of the theory for the general inequality-equality constrained

parametric problem.

2. Notation and Definitions

In this paper we shall be concerned wit;, mathematical programs

of the form:

min f(x,s) P(C)

s.t. gi(x,) > 0 (i=l,...,m), h.(x,E) = 0 (j=l,...,p),

where xeE l is the vector of decision variables, c is a parameter vector

in Ek, and the functions f, gi and h are once continuously differen-

tiable on En x Ek. The feasible region of pioblem P(c) will be denoted

R(c) and the set of solutions S(c). The m-v-ctor whose components

are gi(xe), i = l,...,m, and the p-vector whose components are

h(x,c), J= ,...,p, will be denoted by g(x,e) and h(x,c), respec-

tively.

Following usual conventions the gradient, with respect to x, of

a once differentiable real-valued function f:E xE --E is denoted

V f(x,e) and is taken to be the row vector ['f(x,c)/ax 1,.. .,f(x,C)/ax 1.
x n

-3-
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If g(-(,E) is a vector-valued function, g:E nxEk +Em, whose components

gi(x,c) are differentiable in x, then V g(x,c,' denotes the m x n Jacobian

matrix of g whose ith row is given by V g.(x,t), i i,....m. The trans-

pose of the Jacobian V g(x,c) will be denoted V'g(x,e). Differentiation

with respect to the vector c is denoted in a completely analogous fashion.

Transposition of vectors and matrices is denoted by a prime.

The Lagrangian for P(c) will be written

m p

L(xpwc) = f(x,c) - , + C.zg((x,x)),

and the set of Kuhn-Tucker vectors corresponding to the decision vec-

tor x will be given by

K(x,r) = {(|j,w)cEmxEP:V 0L(x,p,w,) = 0, pi > O, Pigi (x,E) = 0, i--I .. ,m.

Writing a solution vector as a function of the parameter E, the index

set for inequality constraints which are bindih~g at a solution x(c) is

denoted by B(c) = {i:gi(x(c),e) = 0). Finally, the optimal value

function will be defined as

f*(0) = min {f(x,E):xcR(c)}.

Throughout this paper we shall make use of the well known

Mangasarian-Fromovitz Constraint Qualification (MFCQ) which holds at

a point xcR(c) if:

i) there exists a vector -YCEn such that

Vxgi(x,E) 3 > 0 for I Such that gi(x,c) = 0 and (2.1)

V h (x,c) 0 for J=l,...,p; and (2.2)

xj

-4-
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ii) the gradients V h.(xt), jl9 ... ,p, arc linearl)

independent.

We will have occasion to make use of various continuity properties

for both real-valued functions and point-to-set maps. There are scveral

related definitions of the indicated properties. The ones most suited

to ou: purpose follow. The reader interested in more detail is referred

to Berge [5] and Hogan [161.

Definition 2.1. Let 4 be a real-valued function defined on the space X.

i) $ is said to be lower semicontinuous (lsc) at a point x 0X if0

lim 4(x) > 4(x 0).
x+x

0

ii) $ is said to be upper semicontinuous (usc) at a point x CX if
0

lim $(x) < 4(xo).
x-+x

0

Using these definitions, one readily sees that a real-valued

function 4 is continuous at a point if and only if it is both upper

and lower semi-continuous at that point.

Definition 2.2. Let *:X-Y be a point-to-set mapping and let {c n CX,

with C - - in X as n- .

n

i) T is said to be open at a point £ of X !f, for each xc4(E),

there exists a value n0 and a sequence {xn } C Y with x nC(C n )

for n > n and x -x.

ii) 4 is said to be closed at a point c of X if x n c(s ) and xn-x

together imply that x£4(E).

-5-
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Defirit-on 2.3. A poilt-to-set mapping :X>Y is said to be uniformly

compact near a point T of X if the closure of the set UJc) is corn-
c in N()

pact for some neighborhood N(r) of C.

In Section 3 we apply a reduction of variables technique to P(C)

which transforms that program to a locally equivalent program involving

only inequality constraints. This approach simplifies the derivation

of intcrmediate results which are needed to derive the bounds on the

directional derivative limit quotients of f*(c) given in Section 4.

A demonstration of the results is provided in the example of Section 5.

Section 6 concludes with a few remarks concerning related results.

3. Reduction of Variables

In P(c), if the rank of the Jacobian, V xh, with respect to x of

the (first n) equality constraints in a neighborhood of a solution is

equal to n, then the given solution is completely determined as a

solution of the system of equations h.(x,E) = 0, j = 1,...,n, and the

(locally unique) solution, x(e), of this systLm near c = 0 is then

completely characterized by the usual implicit function theorem. We are

here inte rested in the less structured situation and hence assume that

the rank of V h is less than n. Since we shall be making use of MFCQ,x

this .!ntails the assumption that the number p of equality constraints is

less than n. If there are no equality constraints in a particuLar for-

mulation of P(c), simply suppress reference to h in the following devel-

opment. Otherwise, we take advantage of the linear independence assump-

tion to tliminate the equalities, again using an implicit function

theorem.

L-I-



T-435

Let x (XD,Xl), where XDCEP and x CE Reordering variables if

necessary, if h(x*,t*) = 0 and MFCQ holds at x*, then we may assume that

V h is ncnsingular at (x*,E*). Then the usual implicit function theo-x 
D

XDn-p k
rem resuiLs hold: there exists an open set N*CE x E containing

(x*,E*) such that the system of equations h(xD,xi,E) = 0 can be solved

for xD in terms of x I and C for any (xic) in N*. Furthermore, this

representation is unique, the resulting function xD = XD (Xi,) is contin-

uous, and x* = xD(x*,E*). Thus, in N*, the system h(xD,XiE) = 0 is

satisfied identically by the function xD = XD(Xl,£). Under our addi-

tional assumption that h is once continuously differentiable in x I and

C, xD(XI) is also once continuously differentiable in xI and S.

Applying this result to P(C) at x*, since we have h(xi,£)

h[xD(XXI,),xIe] E 0 in N*, this problem can he reduced locally to one

involving only inequality constraints:

minxf(Xl,)

s.t. gi(x1 ,c) > 0 (i=l,...,m), P(E)

and (xlE) C N*,

where f(xl) I f[xD(xls),xlJ ] and g i(xl,) gi for

il,.. .,n, and where the minimization is now performed over the n-p di-

mensional vector xI. The programs P and P are locally equivalent, for

(x,t) in a neighborhood T* of (x*,O) and for (xlc) in N*, in the sense

that the point x(c)CE n, with (x(E),c) in T* and x(e) = (xD(C),Xl(E)),

satisfies the Karush-Kuhn-Tucker first-order necessary conditions for an

optimum of P(c) if and only if the point x (), wIth (x1 (c),E) EN*,

-7-
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satisfies those conditions for P(t.), where x (x.,E) is as given above.

Furthermore, in the given neighborhoods, x(E) (xD(xI(C),C%,Xl(c)) is a

local solution of P(C) if and only if x (E) is a local solution of P(C).

We first observe that the Mangasarian-Fromovitz constr -int qualifi-

cation for P(E) is inherited by the reduced problem P(E). For simplic-

ity in notation, and without loss of generality, assume that E* = 0, and

assume that the components of x have been relabeled so that x = (xD,xl)

andV h(x*,x*,O) is nonsingular. The next result is easily obtained by

invoking MFCQ at (x,) = (x*,O), partitioning the MFCQ vector j = yDYl

in conformance with x* = (x*,x*), differentiating h and g with respect to

X, and applying the assumptions. Corresponding to the notation for P(c),

we denote the feasible region, solution set atid optimal value of P(E) by

R(c), S(L) and f*(c), respectively. Other corresponding problem constit-

uents will be similarly denoted.

I
Lemma 3.1. If g,hEC , then MFCQ holds at x*ER(O), the feasible region of

P(O), with y= yD, En the associated vector, where YD C-E p and

Yl En-P if and only if MFCQ holds at the point x* €R(O), tqe feasible

region of P(O), with vector YI"

Proof. Suppose that MFCQ holds for P(0) at (x* ,O) , (xDXlO) with

(3fDY I ) the associated vector. Writing Vxh as V,: XI we

see that (2.2) can be expressed as:

V h,o) YD+ Vx Ih(x*,0) Y = 0. (3.1)

-8-
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Since we have assumed that V h(x ,0) is nonsingu]ar, we cen solve

for YD in (3.1) and obtain:

-[Vx h(x,)]-1 Vxh(x*  (3.2)
YD = - x ,0)Y"32

Now, denoting the inequality constraints of V(O) by gi i.e.,

Ti Wg 1i (xvO),x1,o), i = 1,... ,m, by differentiating with respect

to x I we obtain:

Vxigk = Vxi)g i VxIXD + Vxi,'

or

V = Vxg i (33)

Multiplying by 7I in (3.3) we have:

V x 1 7 = Vxgi 71" (34)

But h(xD(xl,O),xl,O) = 0 so that

V xDh(xD(XIO),XI,0) VxIX D + Vx h(XD(xI,0),xi,0) = 0,

and since V xDh(XD(xI,0),x,O) is nonsingular, wE. obtain:

Vx.. I - I VxDh(xD(xIO),xIO) I V x Ih(xD(X,),xi , 0 ) "

-9-
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Substituting this la. t expression in (3.4) we have:

V 1 I- i [V h(xD(Xl,O),Xl,O)Jl V h( (x0),xiO)]

xVg 1 [1 XD xI D1

and from (3.2) we see that at (xI,0)

Vxlg '71 = Vxgi[l= Vxgi x 1 "  (3.5)

Thus, ly (2.1) it follows that Vxlgi Y, 0.

In []13], Gauvin and Tolle established that the set of Kuhn-

Tucker multipliers associated with a solution, x , of P(O) is non-

empty, compact and convex if and only if MFCQ is 3atisfied at x

That result enables us to establish in Theorem 3.2, a necessary link

between a directional derivative, with respect to the decision vari-

able x., of the objective function at an optimal point and a direc-

tional derivative of the Lagrangian taken with respect to the parameter

c. It is this relationship which eventually leads to the upper and

lower bounds on the directional derivative limit quotients which are

derived in the next section.

We now obtain several perturbation results for problem P(c). These

do not depend on the variable-reduction derivation of P(C) and are ap-

plicable to any inequality constrained problem having the indicated

structure. Hence, unless otherwise stipulated, we assume in the follow-

ing that a problem of form P(C) is given, without reference to P(E).

The next two theorems are crucial in obtaining the sharp bounds on

the optimal value directional derivative limit quotient. They show that,

- 10 -
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at a local minimum where MFCQ holds, there exists a direction (in E 
n -p )

in which the directional derivative of the objective function yields

that portion of the bound attributable to the constraint perturbation.

Theorem 3 .2. If the conditions of MFCQ are saticfied for same

xlES(O), then, for any direction zcEk, there e::ists a vector ycE -

satisfying:

i) -V 0i(i,0) y < V Ci(-xi,O)z for icB(O), and (3.6)

ii) Vf(x],O) y = max [-p'VCg(x I O)z]. (3.7)

CK(x 1 0)

Proof. Given zcE k , consider the following littear program:

max VI -P'v i X ,O)z1

s.t. PjVg(iO) = Vf- x,o)

Pii = 0 (i=,...,m)

> 0 (

The dual of this program is given by:

mrei Vf (x0) y

yv

s.t. Vgi(x,0) y + gi(-I,0)vi > -V gi(-xO)z i

yEe -p , v. unrestricted.

- 11 -
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Since MFCQ is assumed to hold at (x1 ,O), from [13] we have that

K(x[,0) is nonempty, compact and convex. Thus, the primal problem

is bounded and feasible. By the duality theorem of linear pro-

gramming, the dual program has a solution, (v,v), and hence there

exists a vector y satisfying (3.6) and (3.7).

In the next two theorems we show first that, along any ray ema-

nating from E = 0, P(t) ha. points of feasibility near u = 0, and

second, that the existence of feasible points iq guaranteed not only

along rays but in a full neighborhood of L = () in obtaining the fol-

lowing rLC',lts associated with Problem P(L), it is assumed that the

analysis is confined to (x1 ,E) in N*.

k
Theorem 3.3. If MFCQ holds at x IS(O) then, for any unit vector zE

and any 6 > 0, g(x I + a(y+(Sy ),3z) > 0 for 6 positive and sufficiently

near zero, where y is any vector satisfying (3.6) and y satisfies MFCQ.

Proof. Let z be any unit vector in Fk and consi er first tne case

in which the constraint gi (x ) 0 i; binding, at (x ,O). Expanding

g( 1 + (y+ yl),3z) about the point (x[,O) we obtain:

+ (y+ ,y 1 ) ,bgz) = 8xg 1  (x + tP(y + 6y 1 ) ,z)(Y + 6 Y-)

+ 6 Vf gi (x it'~z) z

t= [ Vxg(x +t (y+6y1 ) ,+6 O)y + Vg(xl ,t'Bz)z]
tx

+ Vxg1 (x1 + t V( + I

where t,t'c(0,1) and t t(O), t'

- 12 -
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Now, by (2.1), V gi(xlO)y = a. 0. Thus, there ex:sts 8' > 0

such that for all t I0,'],

3a.
V i (X + tG+6 ),i~z) >

F.rom (3.6) it follows that for f$ sufficiently sm.,il,

6a.

V g (x + tS(y+6 y),Iz)y + V g (x .t'"z)z 4

Thus, -or $ positive and near zero we have:

6a. 3a. 6ai

Finally, if gi(xiO) -- 0, since each is jointly continuous in

kx and r, i, follows that, for any unit vector ztE , and any 6 > 0,

g (x I (Y+6v ),3z) I) or i near zero.

'herem 3.4. If MFCQ is satisfied at x I S(O) and if -k 0, then, given

any 6> 0, there exists )k 0 and a vector y such that
k.

g(xI + t k) > 0 for large j, where {I. } C{c k I .' j g. -- J

H1'k.l'zk. , Zk. 'z, y satisfies (3.6) for z=z, and yl is given by
.1 I .1

MFCQ.

1'roof. If {k} Ck{. k and ,k. 0 for tvery j, the conclusion follows

I J

for 6, k.I and ;my y by taking 0k j 0 for every J. Suppose Ck #0 for

every j. Define P, = 11 and z = Fk h . Then, relabelingS i. k

Zk if necessary, we can assume there exists z such that z k+z. Let y

satisfy (3.6) for the vector z. Then, from Theocem 3.3 and the continu-

ity of g it follows that g(x I + .k (Y+ (Sy)fk )

i I

g(X I + k. (y+'SI' k k > 0 for large J.
.1 *lt

- 13-
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By Theorem 3.4, the satisfaction of the Manasarlan-Fromovitz constraint

qualification at a solution point xI of P(O) is enough to guarantee

the existence of feasible points for T(c) near xY" One might suspect

that there exist points feasible to P(c) which are also feasible to

P(O). This is indecd the case as the next theorem implies (see the

statement immediately following the proof of Theorem 3.5). We shall

need Theorem 3.5 in obtaining one of the key results in Theorem 4.3.

Theoren 3.5. Let 8n - 0+ in E1 , let z be any unit vector in E, and

let 6 > 0. If xc(,z), with x1  xcR(0), and if the conditions of

MFCQ are satisfied at x1, then x + 8n(y+ 6Y)c(O) for n sufficiently

large, where y satisfies (3.6) with z replaced by -z, and yI is given

by the constraint qualification.

- 14 -
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Proof. Consider fiist the case that i(B(O). E- nding g (x + any+ yl),0 )n

about the poiat (x I n 
z), we obtain:

n'i
g (x$ +, - z) + f" VP g~(4~ 0(~~

1( + V I (x" 4 n(y+ t),t'.n z) 0

1n n

wherc ~'~,) t n~ ,t tC .U fo' n large.

x + (y + *v1)iIR(O), since ':Iis feasible for P("17), it r,.ust

he t ha t

igi (x + t 1(v+ 0 ),O)(y+$y ) nV g.('x + (y+ 6v Z),t',7z)." (3.8)

Dividing by n in (3.10) and taking the limit as n - oo we have

g (x ,O)(V + yV ) V XO)z.1gi 1' . c gi (x' •

But this c.ontradicts (3.6) with z replaced by -z F (3.6), since 0 0

:,iI b, ,MI U) lixT .i,),y I  O.
- i1 I1 Y I

If, on the othe." hand. tB(O), gi(x I + Pn(y 4  )O) > 0 for

large n by the cont iiuity of g i and the fa(t that x, x I and fn  0.

It nray be Interesting to note, that by taking x1= I I x (y + y)

for each n in the hypothesis of Theorem 3.5, then Theorems

'3. and 3. ' together imply that (f ) and R(O) have points in common

for t near 0.

.,.L 'I I, losed subset of N* whose interior contains (x*,O) and

,I. ,ott,' hv I' ) the Problem P0.), where N* is replaced by M. The feasible

n, ol ,II PC ) will be denoted by R(L), the so'ution set by S ), the

10 i.1 I v.1 c Ie ,h. f"( ) etc. Denote by M the in'crior of M.

- 15-
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We now show that the optimal value functions F*(E) ;and f*(L) of

1(f ) and PG.), respectively, are continuous near t = 0 unde." the given

assumptions. This is proved by the author under more genertl assumptions

[81, the details being repeated here to make this paper complete. This

result wil be needed in the proof of Theorem 4.5. The continuity of

f*(c) was also shown by Gauvin and Dubeau [12], under the same assump-

tions z.s those given here.

Lemma 3.6. If R(O) is nonempty and R(c) is uniformly compact for E near

zero, then R(c) is a closed mapping at E = 0.

Proof. Let Cn - 0 in Ek, and (for n sufficiently large), let xi R(Cn).

n n
Thus, for n sufficiently large, g(x ,sn) > 0 and (xI En)EM. By the uni-

n.
form compactness of R(c), there exists a convergent subsequence {x1 of

Sn.
fx with xi3 x for some x in the closure of UR(E) for E near 0.

In.

But by the continuity of g, we must have 0 < lim g(x IJE n.) = (XO),

and of course (x1 ,O)CM. Thus xIsR(O) and we have Lhat R(C) is closed at

C = 0.

Theorem 3.7. If R(O) is nonempty, R(c) is uniformly compact for c near

-- - 0zero, and if there exists x ES(O) such that (x1 ,O) M and the conditions

of MFCQ hold at X1 , then f*(E) is continuous at = 0.

k
Proof. Let e 0 in E be such that lim f*(C) = lim ?*(c_). Clearly,

nn-n

since R(e) # for n sufficiently large (Theorem 3.4), S(C) 4 for

large n. Hence, assuming n is large enough, there exists x cS :n). By

the uniform compactness of R(c), the sequence {x"l admits a convergent
In.

subsequence {x j. Let x denote the limit of tha: subsequence. From

i.emma 3.6, i() is a closed mapping at c= 0, so x ER(0). Thus,

- 16 -
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n.
lim fY*() = lim f*(c) = lr f(xl ) = f(X,0) > 7*()

and we see that f*(E) is Isc at C = 0.

Now let 6>0, l.!t be given by MFCQ for XP and select c -0 such

that lim f*(c) = lim f*(en). From Theorem 3.4 we know - 0 and y
O  nn

such that x + Sn (y + 6Yl)sR(En) for j large, where y satisfies
I n. I n.

J J

(3.6) for some vector z. Hence,

lim f*(E) = lim f*(n ) < lim f(x + 5 (y+ f(x) = = (O)6-0 E -*0 j jonj
nn

Thus f*(c) is also usc at E = 0 and we may conclude that f*(E) is con-

tinuous at'C = 0.

We should mention that the continuity of f* requires only the con-

tinuity of f in addition to the once (joint) -.ontinuous differentiabil-

ity of the constraints.

The continuity of f*(E) at c = 0 leads to a simple proof of the

continuity of f*(e), the optimal value of P(E). This is of intrinsic

interest and will also be used in deriving the directional derivative

limit quotient lower bound in the sequel. We first note the following

result, the first part being an easy consequence of the continuity of

the problem functions that is proved precisely ar.alogously to Lemma 3.6.

The proof that f*(C) is lsc at e = 0 precisely parallels the first part

of the proof of Theorem 3.7 that shows that f*(c) is isc.

Lemma 3.8. If R(O) is nonempty and R(E) is uniformly compact for

c near 0, then R(c) is a closed mapping and f*(c) is Isc at c - 0.

- 17 -
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Theorem 3.9. If R(O) is nonempty, R(c) is unifor,nly compa:t for C near

0, and if MFCQ holds at some x*CS(O), then f*() is continuous at C = 0.

Proof. We eliminate the equalities of P(E) at x* for (xlgc in a neigh-

borhood N* of (x*,O), where x* = (x*,x*), using the previou.sly definedI D' I'

variable reduction tiansformation, constructing problems of the form

P(E) and T(E). We know that x*ES(O) and that MFCO holds at x* (Lemma

3.1). Also, the uniform compactness of R(C) near g = 0 implies the

uniform compactness ef R(c) near E = 0.

Clearly, f*(e) < f*(E) f*(6) and since f*(0) = f(x*,O) = f(x*,O),
I'

we conclude that f*(C) = f*(0) = f*(0), which also implies that x*ES(O).
I

The assumptions of Theorem 3.7 are satisfied, hence f*(C) is continuous

at 0. These relationships imply that lim f*(E) < lm f*() =
c-*O C-)*O

!*(0) = f*(O); i.e., f*(E) is usc at 0. Since f*(C) is also lsc at E =

0 (Lemma 3.8 ), the conclusion follows.

4. Bounds on the Parametric Variation of the Optimal Value Function

In this section we are concerned with the directional derivative

of the optimal value function for P(c). We first derive upper and

lower bounds on the Oirectional derivative limit quotient of f* (E)

for P_() and then obtain the corresponding bounds for P(E). These

results extend the work of Gauvin and Tolle [!3], who obtained the

analogous results for the case in which the perturbation is restricted

to the right-hand side of the constraints.

As above, we will, without loss of generality, focus attention

kon the parameter value e 0. For zcE k , the directional derivative

-18-
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of f*(e) at E = 0 in the direction z is defined to be:

D f*(0) lin f (Bz) - f*(0) (4.1)z 0+ B

providing that the limit exists.

Theorem 4.1. If, for '(s) MFCQ holds for some x e^(O), then, for

k
any direction zeE

lim sup f*(az) - f*(O) < max V(-L , ,O)z. (4.2)
++cK(x, O)

Proof. Let 0 satisfy the conditions of Theorem 3.3, let 6 > 0

and Ybe the vector given by the constraint qualification, and

let y satisfy eqs. (3.6) and (3.7). Then, for any zcEk,

X + (Y+6Yl) (Oz) for B near 0, so that

________f(x + (Y+6 1), Z) - i(x1,0) di
lim sup < lira+ sup f0 df -

= Vf(x 1 ,O)(y + 6y I ) + VCf(x 1,O)z.

Since this inequality is satisfied for arbitrary 6 > 0 we can

take the limit as 6 + 0 and obtain:

f*( z) - f*(O) < V(x ,O). + V(
lim supf(xO)z.

The conclusion now follows by applying (3.7):

-19-
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f*(Iz) f*(o) < -mx 1-ji'vg(X 0) + V EK(x*,O)

I,= max V E:L(XV,1,,O)z.

Corollary 4.2. Under the hypotheses of the previous theorem, if MFCQ

holds at each point x CS(O), then

sup f*(Bz) - f*(0) < inf max V L(x1 , ,O)z. (4.3)

_O XlES(O) CK(xi,0)

Proof. The result follows directly by applying the previous theorem at

each point of S(O).

To obtain a lower bound on the directional derivative limit quo-

tient, we use MFCQ and the following result which is well known and fol-

lows easily from the results obtained in the last section.

Lemma 4.3. If R(O) # 0, R(E) is uniformly compact near E = 0, and f*(E)

is continuous at C = 0, then S(E) is closed at C = 0.

Proof. Suppose Cn 0 as n and suppose xICS(£ n) is such thatnn

xI - x*. By Lemma 3.6, R(E) is closed at = 0, so x*ER(0). Since
m n

f*(c) is continuous at E 0, it follows that lim f*(Cn) lim f(xlIC) =
n-ox n-*wo

f(x*,0) = f*(O), hence x*eS(O).

The next lemma is an immediate consequence of this result and

Theorem 3.7.

- 20 -
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j.emna 4.4. Suppose .. - 0 and the assumptions of Theorem 3.7 hold.n

Then, for n large, t;ere exists X nS(cn) and all limit points of {x }
I nI

are in 9(0).

Proof. The fact that S(E) # 0 for near 0 follows from the fact that

R(En) # n (Theorem 3.4) and compact for n large (since R(E) is uniformly

compact for c near 0) and since f(xl,n) is continuous in N*. From

Theorem 3.7, we know that f*(E) is continuous at c = 0. The conclusion

then follows from the previous lemma.

k n
Definition 4.5. For any given vector zEE , an infimal sequence xI of

the directional derivative limit quotient of f*(E) is defined as {xn}
nI

such that x IS( nZ) andI nf(xianZ ) - f(x*,O)

lim inf f*( z) - f*(0) = Inm

n->o an

k
Theorem 4.6. Suppose z is any given vector in Ek . Suppose the assump-

tions of Theorem 3.7 are satisfied and suppose that x is a limit point

of an infiral sequence {x } as defined in Definition 4.5, relative to the

given vector z. Then,

lim inf f*(Bz) -*(O) _ _min VE (XIPO)Z. (4.4)
_+K(xlC)

Proof. Let 0n - 0+. We already know from Lemma 4.3 that there exists

X nES(0nZ) for n large, and all limit points of {x n} are in §(0). Also,
I n I

by definition, an infimal sequence as defined above always exists and

there must exist at least one limit point in S(0) of this sequence.

- 21 -
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Relabeling if necessary, our assumptions allow us to conclude a bit more,

i.e., that xn I x9(0)0N*, where {x I is an infimal sequence relative

to the given vector z.

Since MFCQ holds at x Theorem 3.5 assures that x1 + 6n(y+6yl)ER(O)
I' n

for n sufficiently large. It follows that

fxnZ ) - ~ 0)

lim inf f*(az) -*(0) = lim ?(x I nz) XO

n-0 r
-n

i(x, ,Zn) - f(x + n(y+5 ),o)
> lim

n-*w°  n

- lim [-Vf(a n)(y+S i) + V f(a n)Z]
n-n

by the mean value theorem, where a is the usual convex combination (in

n

Enp x Ek) if the two arguments in the preceding quotient. Thus,

lim inf ?*()> lim V f(a )z - Vf( )(+6)
0_0+  n-_ C I

SVCf(x IO)z - Vi(xMo)(y+6 1 ).

Using Theorem 3.2 and noting that 6 was chosen as any positive value, we

conclude that

lim inf ?-*() > V f(xl,0)z - max [p'V j(Xl,0)z]S I0+ E:(zO) £ I

S min V5L(Xl ,,0)z.
PEK(xI,0)

Corollary 4.7. Under the hypotheses of the previous theorem

f*(B3z) -f*(O)

lim inf > inf min V L(X xI,O)z. (4.5)a-0+  8x I S(O) ISK(xl,O)

- 22 -
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By the reduction of variables that was applied earliey, in a neigh-

borhood of (x*,O), with x = (Xl,E),X

L(x,p,w,c) = f(x,E) - O'g(x,E) + w'h(x,c)

= f(xD(XIE),xI,c) - P'g(xD(xIE),x1,C) + w'h(xD(XlE),xIc)

=f(X 1,r) - i(x 1 ,c = L(x1 ,E),

with f(x,c) f(xiC) , g(x,e) : g(xiE), and h(x,) E O(x1,E) : 0. Thus

L(x,p,W,E) L(XIP, ) in a neighborhood of (xD(x*,O),x*,O) = (x*,O) and,
DII

with w determined by w' = -(V XDf - VxDg)[V it follows easily

that V L = V L and the linear program appearing in the proof of Theorem

3.2 and involved in the preceding bounds can readily be formulated analo-

gously as a locally equivalent problem in terms of L(x,p,w,C).

We now utilize the above results obtaine4 for P(E) and P(E) to ob-

tain bounds for the optimal value directional derivative quotient of P(E).

Theorem 4.8. If MFCQ holds at some x*ES(O), then for any direction zE k ,

lim sup f*(0z) - f*(O) < max V L(x*,p,w,O)z
0+ 8= (j,w)K(x*,O)

Proof. Apply the variable reduction transformation at x* = (x*,x*)

D' I

as in the previous construction to obtain a problem of the form P(E),

defined for (x1,c) in a neighborhood N* of (x*,O). Since f*(c) <

f*(C) and f*(O) = i*(O), we have that

lim sup f*(1z) - f*(O) < lim sup f*(az) - f*(O)

and the conclusion is an immediate consequence of Theorem 4.1, having

expressed the bound in (4.2) in terms of the original variables by way

of the variable reduction transformation.

- 23 -
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Theorem 4.9. If R(O) # ', R(C) is uniformly c3mpact near C = 0, and

MFCQ holds for each xtS(0), then for any direction zcE,

lim inf f*(az) - f*(0) > min V L(x*,Ww,0)z
(+  p (, )K(x*,O) £

holds for some x*cS(0).

n n
Proof. Given any zEE , consider x E S(n z) such that

f*(rz)n- f*(O) f(xn,nz) f(x*,0)

lim inf =lim I
+  nno  n

Since R(C) is uniformly compact, there exists a subsequence, which we

again denote by {xn}, and a vector x* such that x n- x*. By Lemma 3.8,n

R(E) is closed and, by Theorem 3.9, f*(C) is conLinuous at E - 0. It

follows (as in the proof of Lemma 4.3) that S(C) is closed at 0, so

x*CS(O).

We now apply the variable reduction transformation at x* =

(xD,x), following the usual construction, and obtain a problem of the

form P(C), defined for (xiS) in a neighborhood N* of (x*,O). We also

define the reduced problem P(c), i.e., problem P(E) with M, a closed

subset of N* whose interior contains (x*,O), replacing N*.

Noting that in N*, f*($nZ) = ?*(n z) and f*(0) = !*(0), it is

easily verified that the assumptions of Theorem 4.6 are satisfied and

we also have

lir inf f*( z) - f*(O) = lim inf f*(3z) - f*(O)

from which the conclusion follows, expressing the right hand side of

(4.4) in terms of the original variables via the variable reduction

transformation.

- 24 -
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Clearly Corollaries 4.2 and 4.7 immediately extend to C*(:) as

well, using these results. Thus, all of the results obtained above for

P(c) and P(c) can be immediately generalized to P(e). For completeness,

we state these results as the next theorem.

Theorem 4.10. If, for P(E), R(O) is nonempty and MFCQ holds at each

kxcS(O), then for any unit vector zEE

lim sup f*(0z) - f*(0) < inf max V L(x,p,w,O)z, (4.6)
6 + 6 xcS(O) (p,w)cK(x,O)

and if R(c) is uniformly compact for £ near c = 0, then

lim inf f*()-f*(0 > inf min VL(x,11,w,O)z. (4.7)0->0+ 8 -xcS(0) (p,w)FK(x,0)

Moreover, we are able to obtain the existence of the directional

derivative of f* at c = 0 by assuming, as Gauvin and Tolle [13] did

for right-hand side programs, the linear independence of the binding

constraint gradients at each point x*ES(O).

Corollary 4.1_. Assume R(0) is nonempty and R(E) is uniformly compact

near c = 0 If the gradients, taken with respect to x, of the con-

straints binding at x* are linearly independent for each x*ES(0),
then for any unit vector zeEk , D3f*(0) exists and is given by

z

D f*(0) = inf V L(x,p(x),W(x),0)z,
xcS(O)

where (6(x),w(x)) is the unique multiplier vector associated with x.

- 25 -
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Proof. At any point x*rS(O), the linear independence of the binding

constraint gradients implies the uniqueness of the Kuhn-Tucker multi-

pliers corresponding to x*. Inequalities (4.6) and (4.7) now combine

to yield the desired result.

Note that in Corollary 4.11 if P(c) contains no inequality con-

straints, we could replace inf by min since U would not appear and

S-V f V h- which is continuous in x, making V Lz a continuous
xD XD

function of x minimized over S(O), a compact set.

We may also show that two of the observations made by Gauv, and

Tolle [131 about D f*(O) for right-hand side programs apply to P(E)z

as well. First if D f*(O) f 
- D f*(O), thenz -Z

inf max V L(xiw,0)z = sup min V L(x,ji,w,O)z. (4.8)
xcS(O) (P,,o)cK(xO) xcS(O) (P,)6;K(xO)

Thus, if, for all unit vectors zcE k , D f*(0) = - D f*(0) and

D Zf*(O ) = inf max V L(x,i,w,O)z, (4.9)
xcS(0) ()j,w)cK(x,0)

then (4.8) provides a necessary condition for the existence of V f*(O).

In addition, if (4.8) holds for every unit vector zLE k and if x*CS(0)

is the unique solution of P(O), then its associated Kuhn-Tucker multi-

plier vector is unique.

We next apply the results derived above to a particular class

of programs. We show in the next theorem that if P(c) is a convex

program in x for c near c = 0, i.e., if f(x,c) and -gi(X'O.
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1=,..m, are convex and if h .(x'0), j~l,. ..,p, are affine in x, then

D1 f*(O) exists and is given by (4.9). To prove this result, we will re-E

strict our attention to convex programs of the form P(C), with (xlE) no

longer constrained to be in a specified neighborhood N*. We ace able to

do this since the functions h.(x,E) are assumed to be affine in x and

f(x) and the -gi(x,E) are taken to be convex in x, from which it easily

follows that the variable reduction transformation applies globally, and

further, f(x , andthe -ji(Xl~e) are convex in xI for i1 ,....m.

Theorem 4.12. In P(c), let f(x,c) and -gi(x,e), i = 1,...,m be con-

vex and lt h (xe). j = 1,...,p be affine in x. If R(O) is non-

empty, R(c) is uniformly compact near c - 0, and MFCQ holds for each

k
x*SS(O), then, for any unit vector zcE

D f*(0) inf max V L(x,i,W,0)z. (4.10)
Dz xcS(O) (jj,w)cK(x,0)

Proof. Without loss of generality, as indicated, we will prove this re-

sult for P(c), with the set N* not present. For convenience, the nota-

tion is somewhat simplified by dropping the subscript I in the argument.

Note that the assumptions imply that R(c) = {xIji(x,c)>0, i=l,...,m} is

a convex uniformly compact set near c = 0.

Let x*cS(0) and x ncS(n z) with n n 0+ in such a way that

f(xn,8nZ) - f(x* 0)
lim inf () f*(0) l "m

and x- x* as in the proof of Theorem 4.9. For all tj*tK(x*,O),
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L(xn.l,*.BnZ )  x n( .nZ ) _- , '9 (xn , an Z) < ~x n9 Onz).

where the inequality follows from the non-negativity of both i* and

g(xnnz). Thus, since t(x*,p*,O) = f(x*,O),

f(x n, nz) - f(x* 0) !(x n.W*.nZ) - (x*.,*.O)
lim > lim
nm >0 -8- 'n

Now, as a result.of the Kuhn-Tucker conditions and the convexity

assumptions, x* is a global minimizer of T(x,p*,O), so

T(xn, I, nz) - t(x*,I*,0) r(Xn.P*.Onz) - (xn. *.0)

lum > lim
n-)OO n --- ono n

t(xnj*.O) + 8VL(xn. *.t8n)Z L(xn,14*O 0)
=limrn-3,00 8n

by the mean value theorem, where tc(0,l). Thus

1i n(Xn ,8nz) - i(x*,O)
lim > lm VC(X n p,t6nz);,n O0 8n -00~o

and, passing to the limit on the right, we are able to conclude that

t(xn,0nZ) - f(x*,O)
lira > VL(x*,P,*,O)z. (4.11)

n

Thus, for some x* S(O), since (4.11) holds for eaci i*tK(x*,O), and

recalling from 1131 that K(x*,O) is coir.iact,

lim inf f(Pz) f*(>0) " ,(x* )z

0,0+  WEK(x*,O) "
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from which we see that

lim inf f* (z) -f*(0O) > inf max V LIkx,li,O)z.
0,0+  - xC&(O) IIEK(X*,O)

Combining this result with that obtained in Corollary 4.2 we conclude

that

D f (0) = inf max V L(x,P,O)z.
z xc: (O) jiSK(x,O)

For convex P(c), (4.10) now follows by an inversion of the reduction

of variables process applied to yield P(L).

5. Example

We use the example stated below to demonstrate some of the theoret-

ical results obtained in the previous sections. For the given problem

we show that the conditions of MFCQ hold at every point li S(6) and we

give the form of the vector satisfying the constraint qualification. We

obtain the form of the vector satisfying (2.1) and (2.2) for P(C), and

show that the bounds stated in (4.6) and (4.7) are attained.

Consider the program

min LxI P)

s.t. g(x,c) = - (x-) 2  (x2-2)2 + 4 > 0

h(x,t) = - x1 + x2 + f = 0.

The solution of this program is easily determined to oe xI  X 2 + E with

29 2

- 29 -
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, 0 '>0 , and if , = 0, x2 can be any value in the iaterval [0,2]. (5.1)
2 2 C<0 2

Applying the reduction of variables technique outlined earlier, with

x= and x x2 , P(c) is transformed into the equivalent program

rain C(x 2 +E:)

s.t. [(x2,C) = - x2 - (x2-2)
2 + 4 > 0

whose solution is given by (5.1).

For both P(c) and F(E), the optimal value function can be written

as

f*(C) = 2 o (5.2)
le2+2c C < 0

We see that f* is continuous for all values of E, but it is not differ-

entiable at c 0 0. It does, however, have directional derivatives at

c = 0 which are given by

0 z I

Dzf*(0) = 1-2 z (5.3)

To illustrate Lemma 3.1, we first determine the general form

of the vector, 7, associated with points xwS(e) at which MFCQ is

satisfied. The constraint gradients of P(E) are

Vg(x,c) = [-2(XI- c), -2(x 2- 2)], and

Vh(x,e) = [-1,11.

- 30 -

a -



T-435

Applying (2.1) and (2.2) at a point x* (XIX2)CS(C), with Y

(yY2, we require that Vg(x*,c)y = -2(x*-L)y 2(x*-2)y, > 0 if

g(x*,O) = 0, and

Vh(x*,c) 3 = -yl + Y2 = 0.

Thus, for any value of c, since g(x,c) is binding only if x= 0,2,

y can hav- the form

(a,a) x2 = 0

= (b,b) 0 < x2* < 2 ,(5.4)

I2
S(c,c) x 2 

= 2

for any real numbers a,b,c with a > 0, b # 0, and c < 0. We

can also conclude that MFCQ holds at every solution of P(c).

In a similar fashion, we see that, for (c),

VF(x2,C) = -2x 2 - 2(x2-2),

so applying (2.1) we find that the vector 7, in the reduced

program takes the sawe form as the second component of -Y in (5.4).

Now

VI,(xit ,wc) = [E + 2p(x 1 -e) - w, 2P(x 2 -2) + w],

so that at a solution x*LS(0) we must have 2px1 - = 0 for

(;,w)cK(x*,0). Then
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V L(x*, ,,) = x,

and, with S(O) = (xcE2: x1=x2, x2E[0,2]},

0 z l

min max V EL(x, ,IWO)z = . (5.5)
xcS(O) (pw)cK(x,0) (-2 z=-l

Comparing (5.3) with (5.5) we see that (4.6) holds with equality.

Now, coasidering inequality (4.7), we first note that for any

neighborhood N(O) of OcE I, the closure of the set

[xcE2: x = (x2+f, x2), x2c[0,2], c in N(O)} is compact so R(e) is

uniformly compact for c near c = 0. We calculate

0 z =1
min min V EL(x,P,w,O)z =

xcS(O) (p,w)eK(x,O) 1-2 z = -1

and find that (4.7) also holds with equality.

The above results could have been anticipated from (4.10), since

the conditions of Theorem 4.12 hold for this example.

An example is given in [13] which illustrates that (4.6) and

(4.7) need Pot hold with equality.

6. Related Results

Inspection of the derivation of (4.6) and (4.7) reveals that the

bounding term in these expressions, namely VCL(x,p,w,O)z, can be

viewed as the sum of two distinct expressions, one resulting from the

variation of the objective function of P(u) with respect to the

parameter, the other deriving from the dependence of the region of
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feasibility on the parameter. The first of these terms ii VEf(x,O)z

and is eiisily seen to result directly from the manipulation of the

limit quotients in the proofs of Theorems 4.1 and 4.6. The second

component, [-O'V'g(x,o) + U)'V'h(x,E)]z, results ftom the Lssumption that

MFCQ holds at points of S(O). The conditions of MFCQ are invoked to

enable us to conclude (3.7), as well as the existence of

points feasible to P(c) in a neighborhood of e = 0. Having made

these observations, we are now able to discuss the relationships

between the bounds provided here and results previously ostained by

others. As we shall see, in particular instances in whicht the direc-

tional derivative of f* is shown to exist, it is expressed as either

a function of V f or a function of V g and V h, or a combination of

all of these terms, depending, as one would suspect, on where in

P(c) the parameter appears.

Danskin [6,7] provided a now well-Kn,n characterization of the

directional derivative of the optimal value function of P.c) in the

case that the constraints are independent of a parameter. Under the

conditions that the region of feasibility, R(O), is compact, and

f(x,E.) and V f(x,e) are continuous at c = 0, Danskin showed that

D Zf*(0) = min V f(x,0)z. (6.1)
xsS(0)

Relating our hypotheses to Danskin's construct, we first note the

equivalence of our assumption of the uniform compactness of R(c) for

r: near c = 0, and the assumption that the feasible region is compact

if the constraints of P(c) do not depend on c. To see this, one need
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only consider that, in this case, R(f.) - R(O) for all c rnd apply

Definition 2.3. In addition, when the feasible region is independent

of c, our development need not consider the perturbed point

x *+ (y + ry), but may be restricted to the point x *S(C). The proofs

of Corollaries 4.2 and 4.7 remain valid in this case by s-imply

suppressing all reference to the dependence of the constraints on F

and by cons4dering the unperturbed point x* instead of x* + (y + 6).

One is then led to conclude that, analogous to (4.6) and (4.7),

lim sup f*(az) - f*(0) < min V f(x, 0)z, and (6.2)
640 +  BxES(O)

lim inf > min V f(x,O)z, (6.3)
xCS(0)

k
for any unit vector zEE . Thus it follows that, under the stated

conditions, namely the compactness of R and the continuity of f(x,E)

and V f(x,c) at e = 0, our results are consistent with those ofS

Danskin in that they verify the existence of D f* (0) and show (fromz

(6.2) and (6.3)) that it can be expressed as in (6.1).

Gauvin nad Tolle [13] showed, for programs with right-hand side

perturbations, i.e., for programs of the form

min f(x)
P,(

s.t. gi xW > 0i (i1 .... ,M),

hj (x W- Cmnrj  (jzl ,. .. , p) ,

that n101(lujh the directional derivative of f* may not exi-;t, its
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only consider that, in this case, R(t-) 7 R(O) for all c cnd apply

Definition 2.3. In addition, when the feasible region is independent

of c, our development need not consider the perturbed point

x + (y + 6y), but may be restricted to the point x*LS(C). The proofs

of Corollaries 4.2 and 4.7 remain valid in this case by simply

suppressing all reference to the dependence of the constraints on c

and by considering the unperturbed point x* instead of x* + a(y + 5 ).

One is then led to conclude that, analogous to (4.6) and (4.7),

lim sup f*(Bz) f*(0) < min V f(x,O)z, and (6.2)
Xr:S(O)

lim inf f*Oz) - f*(0) > min V f(x,0)z, (6.3)
xES(o)

k
for any unit vector zcE . Thus it follows that, under the stated

conditions, namely the compactness of R and the continuity of f(x,e)

and V f(x,c) at e = 0, our results are consistent with those ofS

Danskin in that they verify the existence of D f * (0) and show (fromz

(6.2) and (6.3)) that it can be expressed as in (6.1).

Gauvin and Tolle [131 showed, for programs with right-hand side

perturbations, i.e., for programs of the form

min f(x)

s.t. g i W) > Ei (i=l,...,m),

h.(x) = + (j,...,p),

that although the directional derivative of f* may not exist, its
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limit quotient can be bounded. In particular, they concluded that

if MFCQ holds at each element of S(0) and if R(c) is uniformly compact

for c near c 0, the following inequalities are satisfied:
*z :()m p

lim sup f*(z) - f*(0) < inf max lp z (6.4)B O B--xcS(O) (p,w)E:K(x,O) ilj=1

and

lim inf fk(z) - f* (0) >_ min _i z m 1  (6.5)
xcS(0) (i,-)lK(x,0) j=!

Now, from (4.6) and (4.7) we see that the bounds we have given for

the general program P(r) reduce to those in (6.4) and (6.5) respec-

tively for the more restrictive perturbations appearing in P'(c).

In tbe case of convex programs, the existence of Dzf*(O) assured

by Theorem 4.12 and its expression as (4.10), corresponds under

slightly different assumptions, with results achieved by Gol'stein

1141 and Hogan [15]. Theorem 4.12 is a direct extension to the general

perturbed mathematical program of a result given by Gauvin and Tolle

1131 for right-hand side programs.

A. Auslender (4] has extended the results of Gauvin and Tolle

131 to problems involving non-differentiable functions. In

particular, the bounds noted by (6.4) and (6.5) are obtained for

right-hand side programs in which the problem functions are locally

Lipschitz and those defining the equality constraints are continuously

differentiable.
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Subsequent to the completion of this paper, it came to our attention

that Geraud Fontanie ["Locally Lipschitz Functions and Nondifferentiable

Programming," M.S. Thesis, Technical Report 80-3, Curriculum in opera-

tions Research and Systems Analysis, University of North Carolina at

Chapel Hill, 1980] extended the Gauvin-Tolle bounds [13] to a generally

perturbed Lipschitz program, using the reduction technique described

here.
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